1,967 research outputs found

    Monitor Based Oracles for Cyber-Physical System Testing: Practical Experience Report

    Full text link
    Abstract—Testing Cyber-Physical Systems is becoming in-creasingly challenging as they incorporate advanced autonomy features. We investigate using an external runtime monitor as a partial test oracle to detect violations of critical system behavioral requirements on an automotive development plat-form. Despite limited source code access and using only existing network messages, we were able to monitor a hardware-in-the-loop vehicle simulator and analyze prototype vehicle log data to detect violations of high-level critical properties. Interface robustness testing was useful to further exercise the monitors. Beyond demonstrating feasibility, the experience emphasized a number of remaining research challenges, including: approxi-mating system intent based on limited system state observability, how to best balance the simplicity and expressiveness of the specification language used to define monitored properties, how to warm up monitoring of system variable state after mode change discontinuities, and managing the differences between simulation and real vehicles when conducting such tests. I

    The specifier–head relationship: negation and French subject proforms

    Get PDF
    This article1 and the three others in this thematic collection are about heads and specifiers, the relationship between them, and how this relationship can change over time. A theme which emerges is the notion that the spec(ifier)–head relationship is cyclic, in other words, the synchronic relationship between the head and its specifier within a given phrase in a given language can be characterised as a location at a particular point on a cycle, while the diachronic development of the relationship can be seen as a directional stepwise shift around that cycle. The article is organised as follows. Section 2 introduces the theoretical framework. Section 3.1 sketches a well-known diachronic phenomenon – the history of sentential negation – which readily lends itself to an analysis in terms of a cyclic spec–head relationship, and shows how the stages in the cycle have been characterised theoretically. Section 3.2 considers another set of data − pre- and postverbal subject proforms in French − which is similarly suitable for such an approach. Section 4, finally, introduces the three other contributions to the collection

    Repeatability of arterial input functions and kinetic parameters in muscle obtained by dynamic contrast enhanced MR imaging of the head and neck

    Get PDF
    BACKGROUND: Quantification of pharmacokinetic parameters in dynamic contrast enhanced (DCE) MRI is heavily dependent on the arterial input function (AIF). In the present patient study on advanced stage head and neck squamous cell carcinoma (HNSCC) we have acquired DCE-MR images before and during chemo radiotherapy. We determined the repeatability of image-derived AIFs and of the obtained kinetic parameters in muscle and compared the repeatability of muscle kinetic parameters obtained with image-derived AIF's versus a population-based AIF. MATERIALS AND METHODS: We compared image-derived AIFs obtained from the internal carotid, external carotid and vertebral arteries. Pharmacokinetic parameters (ve, Ktrans, kep) in muscle-located outside the radiation area-were obtained using the Tofts model with the image-derived AIFs and a population averaged AIF. Parameter values and repeatability were compared. Repeatability was calculated with the pre- and post-treatment data with the assumption of no DCE-MRI measurable biological changes between the scans. RESULTS: Several parameters describing magnitude and shape of the image-derived AIFs from the different arteries in the head and neck were significantly different. Use of image-derived AIFs led to higher pharmacokinetic parameters compared to use of a population averaged AIF. Median muscle pharmacokinetic parameters values obtained with AIFs in external carotids, internal carotids, vertebral arteries and with a population averaged AIF were respectively: ve (0.65, 0.74, 0.58, 0.32), Ktrans (0.30, 0.21, 0.13, 0.06), kep (0.41, 0.32, 0.24, 0.18). Repeatability of pharmacokinetic parameters was highest when a population averaged AIF was used; however, this repeatability was not significantly different from image-derived AIFs. CONCLUSION: Image-derived AIFs in the neck region showed significant variations in the AIFs obtained from different arteries, and did not improve repeatability of the resulting pharmacokinetic parameters compared with the use of a population averaged AIF. Therefore, use of a population averaged AIF seems to be preferable for pharmacokinetic analysis using DCE-MRI in the head and neck area

    Deterministic models of quantum fields

    Full text link
    Deterministic dynamical models are discussed which can be described in quantum mechanical terms. -- In particular, a local quantum field theory is presented which is a supersymmetric classical model. The Hilbert space approach of Koopman and von Neumann is used to study the classical evolution of an ensemble of such systems. Its Liouville operator is decomposed into two contributions, with positive and negative spectrum, respectively. The unstable negative part is eliminated by a constraint on physical states, which is invariant under the Hamiltonian flow. Thus, choosing suitable variables, the classical Liouville equation becomes a functional Schroedinger equation of a genuine quantum field theory. -- We briefly mention an U(1) gauge theory with ``varying alpha'' or dilaton coupling where a corresponding quantized theory emerges in the phase space approach. It is energy-parity symmetric and, therefore, a prototype of a model in which the cosmological constant is protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 . Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone (Sardinia, Italy), September 12-16, 2005. To appear in the proceeding

    Evaluating the probability of silent circulation of polio in small populations using the silent circulation statistic.

    Get PDF
    As polio-endemic countries move towards elimination, infrequent first infections and incomplete surveillance make it difficult to determine when the virus has been eliminated from the population. Eichner and Dietz [American Journal of Epidemiology, 143, 8 (1996)] proposed a model to estimate the probability of silent polio circulation depending upon when the last paralytic case was detected. Using the same kind of stochastic model they did, we additionally model waning polio immunity in the context of isolated, small, and unvaccinated populations. We compare using the Eichner and Dietz assumption of an initial case at the start of the simulation to a more accurate determination that observes the first case. The former estimates a higher probability of silent circulation in small populations, but this effect diminishes with increasing model population. We also show that stopping the simulation after a specific time estimates a lower probability of silent circulation than when all replicates are run to extinction, though this has limited impact on small populations. Our extensions to the Eichner and Dietz work improve the basis for decisions concerning the probability of silent circulation. Further model realism will be needed for accurate silent circulation risk assessment

    Optimizing the Efficiency of Fabry-Perot Interferometers with Silicon-Substrate Mirrors

    Full text link
    We present the novel design of microfabricated, silicon-substrate based mirrors for use in cryogenic Fabry-Perot Interferometers (FPIs) for the mid-IR to sub-mm/mm wavelength regime. One side of the silicon substrate will have a double-layer metamaterial anti-reflection coating (ARC) anisotropically etched into it and the other side will be metalized with a reflective mesh pattern. The double-layer ARC ensures a reflectance of less than 1% at the surface substrate over the FPI bandwidth. This low reflectance is required to achieve broadband capability and to mitigate contaminating resonances from the silicon surface. Two silicon substrates with their metalized surfaces facing each other and held parallel with an adjustable separation will compose the FPI. To create an FPI with nearly uniform finesse over the FPI bandwidth, we use a combination of inductive and capacitive gold meshes evaporated onto the silicon substrate. We also consider the use of niobium as a superconducting reflective mesh for long wavelengths to eliminate ohmic losses at each reflection in the resonating cavity of the FPI and thereby increase overall transmission. We develop these silicon-substrate based FPIs for use in ground (e.g. CCAT-prime), air (e.g. HIRMES), and future space-based telescopes (e.g. the Origins Space Telescope concept). Such FPIs are well suited for spectroscopic imaging with the upcoming large IR/sub-mm/mm TES bolometer detector arrays. Here we present the fabrication and performance of multi-layer, plasma-etched, silicon metamaterial ARC, as well as models of the mirrors and FPIs.Comment: Presented at SPIE Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, June 14, 201

    Epistemic and Ontic Quantum Realities

    Get PDF
    Quantum theory has provoked intense discussions about its interpretation since its pioneer days. One of the few scientists who have been continuously engaged in this development from both physical and philosophical perspectives is Carl Friedrich von Weizsaecker. The questions he posed were and are inspiring for many, including the authors of this contribution. Weizsaecker developed Bohr's view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein's ontically oriented position
    • …
    corecore